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ABSTRACT 

This paper summarizes research efforts at Brigham Young University related to the control of miniature 
aerial vehicles (MAVs).  Recent results in the areas of vector field path following, precision landing and 
target prosecution, target localization, obstacle detection and avoidance, tailsitter aircraft control, and 
cooperative control are presented. 

1.0 INTRODUCTION 

Researchers at Brigham Young University (BYU) have been involved in the study of unmanned aerial 
vehicles (UAVs) and miniature aerial vehicles (MAVs) since the late 1990’s.  BYU’s efforts have spanned the 
range from basic research to technology transfer and commercialization.  In this paper, we briefly describe a 
number of BYU-developed technologies with the potential for military and commercial application. 

The small size of MAVs has several implications on their performance capabilities.  First and foremost, they 
have limited payload capacity (size, weight, and power) and are therefore unable to carry significant 
computational resources or sensors of the highest accuracy and capability.  Second, their small size and 
relatively low flight speeds make them susceptible to degraded performance caused by high winds and wind 
gusts.  These challenges, imposed by the small size of MAVs, must be overcome for MAVs to be utilized 
successfully.  Future advancements in miniaturization and performance of sensors and computers will enable 
increased success.  However, efforts must also be made to utilize existing sensor and computer capabilities in 
novel and innovative ways to enhance the utility of MAV systems in the immediate future.  The following 
subsections describe recent developments at BYU towards this objective. 

2.0 VECTOR FIELD PATH FOLLOWING 

For MAVs, such as those of primary interest in this work, wind disturbances, dynamic characteristics, and the 
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quality of sensing and control all limit the achievable tracking precision.  For MAVs wind speeds are 
commonly 20 to 60 percent of the desired airspeed.  Effective path tracking strategies must overcome the 
effect of this ever present disturbance. 

Implicit in the notion of trajectory tracking is that the vehicle is commanded to be in a particular location at a 
particular time and that this location typically varies in time, thus causing the vehicle to move in the desired 
fashion.  With fixed-wing MAVs, the desired position is constantly moving and the approach of tracking a 
moving point can result in significant problems for MAVs if disturbances, such as those due to wind, are not 
accounted for properly.  For example, if the MAV is flying into a strong wind (relative to its commanded 
ground speed), the progression of the trajectory point must be slowed accordingly.  Given that wind 
disturbances vary and are often not easily predicted, trajectory tracking can be very challenging in anything 
other than calm conditions.  Rather than pursuing the trajectory tracking approach, we have pursued path 
following where the objective is to be on the path rather than at a certain point at a particular time.  With path 
following, the time dependence of the problem is removed. 

We implement path following through the construction of a vector field surrounding the path to be followed 
[1, 2].  The vectors of the field provide course commands to guide the MAV toward the desired path.  
Figure 2.1 shows examples of vector fields for straight-line and circular-orbit paths.  Rather than computing a 
vector field of course commands, course commands are computed as the MAV flies based on its current 
location relative to the desired path. 

 

Figure 2.1.  Vector fields for straight-line and circular paths. 

Critical to the success of the method is the utilization of measurements of course χ and groundspeed Vg for 
feedback instead of heading ψ and airspeed Va.  The relationship between course/groundspeed and 
heading/airspeed is depicting in Figure 2.2.  Assuming that the altitude and airspeed of the MAV are held 
constant (or nearly so), a simple kinematic model of the navigational dynamics of the MAV is 
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where Wx and Wy are the x and y components of the wind velocity.  Drawing on the relationships between 
course, heading, airspeed, groundspeed, and windspeed, the model in (1) can be reformulated as 
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The key distinction is that the equations of motion are expressed in terms of groundspeed and course and are 
independent of the wind velocity. We have shown that by using ground-referenced measurements (i.e., course 
and groundspeed instead of heading and airspeed) in conjunction with the vector field approach to control the 
path of the vehicle, wind-disturbance rejection can be improved significantly, which is vitally important for 
small, low-speed MAVs. 

 

Figure 2.2.  Relationship between airspeed, windspeed, and groundspeed. 

Experimental results validate the potential value of the approach for MAVs flying in windy conditions.  
Figure 2.3 shows path following results for a MAV with a 1.3 m wingspan flying a path through city streets.  
While the flight paths are real, the 30 m wide streets are from a virtual city environment.  Winds were about 
30 percent of the commanded airspeed.  The average tracking error was 3.4 m.  These results demonstrate that 
MAVs can follow paths with precision provided that the effects of wind are dealt with effectively. 
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Figure 2.3.  Urban canyon flight test results. 

3.0 PRECISION LANDING – TARGET PROSECUTION 

The ability to land a MAV accurately on a designated landing point is useful for several applications 
including:   

 

• 

• 

• 

safe recovery of a MAV in hostile conditions 

supply delivery in rescue operations 

precision strike on a target with minimal collateral damage. 

Several challenges make precision landing/strike difficult for small MAVs.  The disturbance imposed by wind 
is always an issue with MAVs, and for the present, sensor errors such as those common in the measurement of 
attitude and altitude cause difficulties.  For precision landing, the most critical information is to know the 
location of the MAV relative to the desired landing location.  Developing reliable methods for measuring this 
information is central to the success of a precision landing approach. 

We have developed precision landing solutions for two situations:  one in which the location of the desired 
landing point is know exactly, and another for the situation where the location of the landing point is known 
only approximately. 

3.1 Precision Landing – Known Landing Location 
In the first situation, we use GPS measurements of the MAV location (x and y) to determine a straight-line 
path to the landing target.  Instead of a GPS measurement of altitude, we measure the altitude above ground 
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level (AGL) to determine the appropriate glideslope to the desired landing point and to control the altitude of 
the MAV along this glideslope.  We have measured the AGL altitude using three methods.  We have made a 
flat-earth assumption and measured barometric altitude as an estimate of altitude AGL.  We have used a small 
laser range finder to measure altitude AGL directly.  This worked well with the major disadvantage being the 
size (32 × 78 × 84 mm) and weight (170 g) of laser range finder.  As an alternative to the bulky laser range 
finder, we have developed a small, lightweight optic-flow sensor with the capability of computing range and 
utilized it to measure altitude AGL [3]. 

The optic-flow sensor, shown in Figure 3.1, is constructed by attaching a lens to an Agilent ADNS-2610 
optical mouse sensor.  The ADNS-2610 has a small form factor, measuring only 10 mm by 12.5 mm and runs 
at 1500 frames per second.  It requires a light intensity of at least 80 mW/m2 at a wavelength of 639 nm, or 
100 mW/m2 at a wavelength of 875 nm.  The ADNS-2610 measures the flow of features across an 18 by 18 
pixel CMOS imager.  It outputs two values representing the total optic flow across the sensor’s field of view 
in both the x and y directions.  With an appropriate lens and the optic-flow sensor pointing toward the ground, 
the sensor measures the magnitude of the flow of objects on the ground relative to the MAV.  Combining this 
information with groundspeed measurements from GPS allows the altitude AGL to be determined. 

 

Figure 3.1.  Optic-flow sensor. 

Precision landing results using altitude AGL estimates were obtained using barometric pressure 
measurements.  Results for 26 landing attempts are shown in Figure 3.2.  The mean landing error was 7.6 m 
while the standard deviation of the landing error was 5.4 m.  The accuracy of the results was enhanced by the 
flatness of the landing site.  Errors were largest in the direction of the glideslope path.  The combination of a 
shallow glideslope angle and errors in estimates of the AGL altitude caused overshoot or undershoot of the 
target. 
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Figure 3.2.  Autolanding results using barometric pressure altimeter. 

Autolanding results were also obtained using optic-flow measurements to estimate altitude AGL.  Results 
from 27 autolanding attempts are shown in Figure 3.3.  The mean landing error for these attempts was 4.3 m 
while the standard deviation of the landing error was 2.2 m.  This represents an improvement of 43 percent in 
the mean error and 59 percent drop in the standard deviation of the error over results obtained using 
barometric pressure measurements alone.  In addition, direct measurement of altitude AGL provides 
robustness to varying terrain and altitude differences between the take-off and landing locations. 
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Figure 3.3.  Autolanding results using optic-flow sensor. 
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3.2 Precision Landing – Uncertain Landing Location 
Some landing scenarios require the MAV to land at a precise location that may be unknown to the operator 
prior to the time when landing is necessary.  In such situations it is convenient for the operator to select an 
appropriate landing location in the real-time video imagery acquired by the MAV.  From the user-selected 
landing point in the image, a linear glideslope to the target can be determined.  By tracking the landing point 
in consecutive video frames, the glideslope can be continually modified to overcome errors due to wind, 
sensor misalignment, or attitude estimation inaccuracies.  Following this glideslope will guide the MAV to the 
desired landing location.  We have implemented vision-based landing approaches with vision processing 
carried out either on the ground station computer or on board the MAV [4].  In this paper, we will focus on 
our results using onboard vision processing. 

Onboard vision processing is enabled by the Helios board shown in Figure 3.4, which was developed at BYU 
[5, 6].  The Helios board utilizes a Xilinx Virtex-4 FX FPGA and an embedded 450 MHz PowerPC CPU to 
perform vision processing calculations.  It has 8 MB of RAM and 64 MB of SDRAM.  It measures 2.5 × 2.5 × 
0.5 inches and weighs 2 oz.  It typically requires 1 to 3 W of power during operation.  For the autolanding 
experiments reported in this paper, the desired landing location was marked by a square red tarp with sides 
2 m in length.  The Helios board performed color segmentation and center of mass calculations to distinguish 
and track the designated landing point.  The pixel locations of the landing point center of mass were utilized to 
provide feedback to the autolanding guidance algorithms. 

 

Figure 3.4.  Helios FPGA board for onboard vision processing. 

The autolanding guidance algorithm is straightforward conceptually.  The approach is to provide flight path 
angle and course commands to the MAV that align its motion vector with the ray extending from the MAV to 
the desired landing point.  This ray is determined from the MAV attitude and the pixel location of the target in 
the image.  Under perfect conditions (i.e. no wind, perfect sensors), the objective would be to guide the MAV 
to keep the landing point in the center of the camera image.  However, with wind disturbances, sensor 
misalignments, and sensor biases common to MAVs, additional measures must be taken to ensure accurate 
landing results.  One approach that we have pursued successfully involves estimation of wind disturbances 
and sensor biases, followed by corresponding corrections to course and glideslope commands to account for 
these disturbance and bias errors. 

15 vision-based autolanding attempts were made on two separate days.  On these attempts, the MAV landed 
on the target on 13 of the 15 attempts.  The two attempts that missed the target both landed within 5 m of the 
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desired landing point.  Figure 3.5 shows the results from a particularly challenging attempt where the MAV 
had a tailwind of 80 percent of the commanded airspeed.  Due to the high groundspeed of the MAV only 15 
vision samples were available to correct the course of the MAV as it flew toward the target.  Once the target 
was acquired by the vision system, the MAV made a hard right turn to land at the designated point.  Figure 3.6 
shows the imagery obtained by the vision system for another landing attempt at three different ranges.  These 
images demonstrate the sensitivity of the color segmentation algorithms and their ability to clearly distinguish 
the target during the descent to the landing target.  Current research is being directed towards implementation 
of feature tracking algorithms on the Helios board to allow landing targets to be of arbitrary color and 
geometry. 

 

Figure 3.5.  Autolanding results with vision.  Tailwind 80% of groundspeed. 

 100 m 50 m 15 m 

Figure 3.6.  Images from onboard camera and output of color segmentation algorithm. 
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4.0 TARGET LOCALIZATION 

The military value of target tracking and localization from a small MAV platform is obvious and significant.  
This importance of this capability has been demonstrated with large platforms, such as the Predator.  
Extending this capability to smaller, more widely available MAV platforms is attractive, but presents 
challenges.  The geometry associated with target localization is depicted in Figure 4.1.  In our implementation 
of target localization, the following information is assumed to be available:  pixel location of the target in the 
image frame, position of the MAV, attitude of the MAV, gimbal pointing angles, and camera calibration 
parameters.  From this information, the target localization algorithm calculates the three-dimensional position 
of the target in the world coordinate frame [7]. 

 

Figure 4.1.  Target localization geometry. 

The most significant challenges associated with accurate target localization stem from the lack of precise 
attitude estimates for the MAV platform.  Pitch and roll are difficult to estimate with a high degree of 
accuracy with the MEMS sensors typically used for MAV control.  Measurements of heading are not available 
– heading is often approximated by the course of the MAV which is estimated from successive GPS 
measurements.  In high-wind conditions (relative to the desired airspeed), the course is often a poor 
approximation of the heading.  These measurement difficulties are further complicated by alignment errors 
between the airframe, the autopilot, and the camera gimbal. 

At BYU, we have developed strategies for target localization that mitigate these ever-present sensor errors 
including recursive least squares (RLS) filtering, bias estimation, flight path selection, and wind estimation.  
Using these methods we have been able to localize fixed targets to within 2 to 3 m of precision consistently.  
Figure 4.2 shows the results of a localization experiment.  The plot on the left shows the MAV location, the 
instantaneous estimates of the target location, and the estimate of the target location resulting from the RLS 
filtering of the instantaneous estimates.  This particular plot illustrates the benefits of the RLS filter.  Even 
though the instantaneous estimate errors are about 30 m, the error in the RLS filter estimate is only 6 m.  The 
errors in the localization estimates exhibit a circular pattern about the target.  This is due primarily to sensor 
biases and misalignment.  By using a bias estimation approach, this deterministic error can be removed from 
the instantaneous estimates.  The improvement in localization brought about by estimating and correcting 
biases in the measurements is shown in the right plot of Figure 4.2.  With bias correction, instantaneous errors 
are reduced to 5 to 10 m and the localization error of the filtered estimate is less than 3 m. 
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Figure 4.2.  Target localization flight test results.  The left figure shows results without bias estimation, 
while the right figure shows results with bias estimation. 

The importance of wind estimation in obtaining accurate target location estimates is highlighted by the results 
shown in Figure 4.3.  The results shown in Figure 4.2 were obtained on a day with calm winds, while the 
results shown in Figure 4.3 were obtained from flights in extremely high winds (above 10 m/s).  The irregular 
flight pattern shown was caused by the high winds.  The wind estimation method we have developed 
estimates the mean wind speed and direction and does not account for gusts.  However, localization results 
from flight tests indicate that the gusts are normally distributed about the mean wind speed, and that the 
effects of gusts are removed by the RLS filter.  The resulting localization estimate for the high-wind test was 
within 2 m of the known location of the target. 

 

 

Figure 4.3.  Target localization results in high-wind conditions. 
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5.0 OBSTACLE D

The ability to operate in constrained environments is of great importance for MAVs utilized in military 
ings, or canyons formed by mountainous 

have demonstrated obstacle 

Given a terrain map of a canyon or mountainous region, safe paths can be generated using path planning 
g waypoints.  Flights through congested areas using only preplanned paths 
ollisions with unanticipated obstacles.  Reasons for this include inaccurate 

t and 
right using the optic-flow range sensors and computes an offset δ from its current path that will place the 

ETECTION AND AVOIDANCE 

applications.  Whether in city corridors defined by streets and build
terrain, MAVs must be able to fly amidst natural and man-made obstacles.  We 
avoidance with a fixed-wing MAV using two different sensing technologies:  optic-flow sensors (discussed in 
Section 3) and a laser range finder.  Optic-flow sensors were applied to the navigation of a mountain canyon 
corridor [8], while the laser range finder was utilized to avoid a building obstructing the flight path of a MAV 
[9]. 

5.1 Canyon Navigation 

algorithms, or manually by definin
based on maps are susceptible to c
or biased terrain data, GPS bias error, and the existence of new unmapped obstacles.  In addition to careful 
preplanning, it is important for MAVs to have reactive capabilities to sense and avoid potential hazards. 

In this research, the MAV follows a given preplanned path using the vector field approaches described in 
Section 2.  At each time step along the path, the MAV measures its lateral distance to objects on the lef

MAV in the center of the corridor.  This is depicted in Figure 5.1 below. 

WP 1 WP 2δ
WP 1 WP 2δ
WP 1 WP 2δ

 

Figure 5.1.  Lateral range measurements used to offset the preplanned path and center the MAV in 
the corridor. 

Goshen phs of 
the flight tests taken by observers and the onboa  shown in Figure 5.2.  In the first flight through 
the canyon, a path was planned that followed the road down the middle of the canyon.  The MAV navigated 

 Canyon in central Utah was chosen as the site to test our canyon navigation approach.  Photogra
rd camera are

the canyon with only minor adjustments to its path.  For the second flight, the planned path was intentionally 
biased into the east canyon wall.  The subsequent successful flight verified the effectiveness of the optic-flow-
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based navigation algorithm in that it corrected the planned path toward the center of the canyon, enabling the 
MAV to avoid the canyon walls. 

 

Figure 5.2.  Op ws the MAV as 
seen from a p  from the MAV. 

5.2 
Reactive obstacle avoidance from a MAV platform is challenging because of the size and weight limitations 

ed by the limited payload of the MAV.  The speed with which 
d out also causes difficulties.  As a first step towards obstacle 

voidance algorithm must plan a path that 
avoids the obstacle and then rejoins the nominal path.  Figure 5.3 (a) shows the instant when the obstacle is 

 

tic-flow-based navigation of Goshen Canyon, Utah.  The main frame sho
osition on the canyon wall.  The inset frame shows the canyon as seen

Reactive Obstacle Avoidance 

for sensing and computation hardware impos
avoidance decisions must be made and carrie
avoidance in urban environments, we have created a reactive avoidance algorithm that utilizes a laser range 
finder to detect and avoid obstacles.  The laser range finder points directly out the front of the MAV and 
returns range data for objects in front of the MAV at a 3 Hz update. 

The scenario of interest is depicted in Figure 5.3 below, where an obstacle obstructs a preplanned waypoint 
path.  Once the laser range finder detects the obstacle, the reactive a

detected by the laser range finder.  The basic idea is to construct an internal map of the obstacles detected by 
the laser and to modify the waypoint path to maneuver around the obstacles in the internal map.  When an 
obstacle is detected by the laser, a virtual obstacle is inserted into the map at the location detected by the laser.  
As shown in Figure 5.3 (b) there are two alternate paths for maneuvering around the virtual obstacle.  If both 
paths are collision free, one path is selected arbitrarily, as shown in Figure 5.3 (c).  Since the virtual obstacle 
is smaller than the actual obstacle, the laser again detects the obstacle as it flies the modified waypoint path.  
A new virtual obstacle is inserted at the appropriate location (as shown in Figure 5.3 (d)) and the process is 
repeated until the MAV maneuvers around the obstacle, as shown in Figures 5.3 (e) and (f). 
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(a) Obstacle

(b)

(a) Obstacle

Original waypoint path

(c)

Modified waypoint path

(d)

(e)

(f)

(b)

Original waypoint path

Obstacle
(d)

Original waypoint path

(c)

Modified waypoint path

(e)

(f)

 

Figure 5.3.  Reactive obstacle avoidance algorithm. 

For our initial obstacle avoid stacle only.  As depicted in 
Figure 5.3, we planned a straight-line path through an obstacle to demonstrate the effectiveness of the reactive 

ance flight tests we chose to deal with a single ob

obstacle avoidance approach.  The obstacle was chosen to be the tallest building on the BYU campus which is 
approximately 50 m high.  The surrounding buildings were only about 20 m high, which allowed the MAV to 
fly unobstructed with the exception of the single obstacle in its path.  The MAV was directed to fly at an 
altitude of 40 m along a path passing through the building.  No information about the location or the 
dimensions of the building was provided to the MAV.  A plot of the MAV’s position obtained from GPS is 
shown in Figure 5.4. 

 

Figure 5.4.  Reactive obstacle avoidance flight test results. 
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As the MAV approached ng and returned a range 
measurement to the building.  In response to this obstacle detection, the reactive planner generated an 

 the building, the laser range finder detected the buildi

avoidance path around the building.  Once the MAV began its turn, it no longer received laser returns from the 
obstacle.  As it started to pass the building, the MAV attempted to rejoin the original waypoint path and 
detected the building a second time.  Based on this detection, the MAV executed a second avoidance 
maneuver before rejoining the original waypoint path.  The MAV was able to avoid the obstacle in its path 
without any intervention from an operator.  Figure 5.5 shows an image of the camera view from the MAV as 
it initiated the avoidance maneuver.  Current research is extending this work to more complex environments. 

 

Figure 5.5.  In-flight image of building obstacle during avoidance man ver. 

6.0 TAILSITTER AIRCRAFT 

s have inherent advantages due to their capability to hover.  Such 
 flight, fly in confined areas, and take off and land in tightly 

y a set of 3-2-1 body-referenced Euler angles ( This 
formulation contains a singularity when θ approaches π/2.  A tailsitter by nature hovers vertically at this 

h
h

eu

VTOL (Vertical Take-Off and Land) MAV
vehicles can persistently image a target in
restricted regions.  These capabilities greatly enhance the autonomy of the MAV, reducing the level of human 
interaction in recovery and deployment, and also enabling perch and stare functions.  Tailsitter MAVs are 
fixed-wing aircraft with VTOL capabilities that combine the advantages of VTOL with the benefit of efficient 
flight.  BYU’s tailsitter MAV is shown in flight in Figure 6.1.  The tailsitter MAV, with its many advantages, 
also poses estimation and control challenges. 

Traditionally aircraft attitude is represented b ϕ, θ, φ).  

singularity, and thus is incompatible with this attitude representation.  Also elevator control based on error in 
θ and rudder control based on error in φ, which are traditionally used for aircraft attitude tracking, degrade as 
φ and  θ  become larger than π/4 respectively.  For fixed-wing MAVs, it is common to estimate aircraft 

eading using course measurements from GPS.  In hover, however, the course flown is independent of aircraft 
eading and an additional measurement must be provided to correctly estimate the heading of the MAV. 
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Figure 6.1.  BYU Tailsitter in flight. 

An additional challenge in controllin rom its nonlinear dynamics that are 
difficult to model.  The tailsitter flies in, and transitions between, two drastically different flight modes:  hover 

 with tailsitter control, quaternion estimation and adaptive quaternion 
control methods have been developed [10].  These methods utilize a magnetometer to estimate the heading of 

ived using Lyapunov and least-squares theory 
applied to simplified tailsitter dynamics.  Simulation results for the controller are shown in Figure 6.2 for a 

ive loop closure is used to hold altitude, and a desired quaternion is generated 
for north-east coordinate position tracking.  The altitude controller gives throttle commands based upon 

g the flight of a tailsitter comes f

and level flight.  Tailsitter aerodynamics, particularly in stall conditions, are complicated and difficult to 
model.  Critical states, such as angle of attack and sideslip angle, are difficult to measure or estimate on 
MAVs because of payload limitations. 

To overcome the challenges associated

MAV in hover.  Quaternion attitude representations lack the singularities inherent with the Euler angle 
formulation.  Further, by implementing quaternion-based control approaches utilizing model reference 
adaptation, the system can quickly learn and compensate for changes in flight conditions and modeling errors.  
Quaternion-based navigational control algorithms for hover position hold, level flight waypoint tracking, and 
transitions between these two modes have also been developed. 

The model reference adaptive quaternion controller has been der

flight that included a takeoff to hover waypoints, a transition to level-flight waypoint tracking, a transition to 
hover waypoints, and then a hover land.  Figure 6.2 shows the reference model and the commanded and actual 
quaternion elements, while Figure 6.3 shows the adaptive terms (both truth and adapted values) for the pitch-
axis dynamics.  The transitions between hover and level flight occurred at 17 and 63 seconds.  Despite large 
changes in system parameters, the least squares algorithm estimates parameters well and the controller tracks 
the reference model as desired. 

For hover position hold, success

control loops closed around propeller-wash airspeed and altitude.  The north-east controller develops a desired 
quaternion that tilts the aircraft from vertical for translation in the desired direction.  Flight test results from 
this controller with the quaternion estimation described earlier have been obtained and are shown in 
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Figure 6.4.  In this test, the MAV was commanded to move from its take-off point to 30 m north and 30 m 
east.  Current research is being directed towards hardware implementation of the adaptive control algorithms, 
improving transitions between level flight and hover, and improving the pinpoint landing capabilities of the 
MAV. 
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Figure 6.2.  Quaternion attitude tracking in simulation of hover, level, and hover flight. 
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Figure 6.4  Hover position tracking in hardware. 

7.0 COOPERATIVE CONTROL 

eams and the success of the mission often hinges on how well 
activities with one another.  At BYU, we have developed a 

, such as might be required 

Military missions are typically carried out by t
the members of these teams coordinate their 
cooperative control framework to enable team-optimal coordination among autonomous or semi-autonomous 
vehicle teams.  The framework requires the definition of coordination variables and coordination functions 
which encode how information is shared by members of the team [11, 12]. 

This cooperative control framework has been applied to a variety of problems, perhaps most successfully to 
problems involving the coordination of timing of actions by members of the team
for a simultaneous strike mission.  Several flight experiments have been conducted to demonstrate this 
capability.  Figure 7.1 shows telemetry from one of the flight tests.  In this test, UAVs were initially searching 
an area of interest independent of one another.  Upon receiving a command from the ground station operator, 
the UAVs were tasked to arrive at a previously unknown destination simultaneously along defined flight path 
angles.  The UAVs were at different distances from the target requiring them to coordinate their paths and 
flight speeds.  Using this cooperative control framework, the three-UAV teams were able to cooperatively 
plan paths to arrive simultaneously (within fractions of a second) on a consistent basis.  Figure 7.2 is a 
photograph showing the results of a simultaneous arrival flight experiment.   
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Figure 7.1. Telemetry data from simultaneous arrival experiment. 

 

Figure 7.2.  Photo illustrating coordinated simultaneous arrival. 

An Overview of MAV Research at Brigham Young University 

27 - 18 RTO-MP-AVT-146 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



ACKNOWLEDGMENTS 

This work was supported by AFOSR award numbers FA9550-0401-0209 and FA9550-04-C-0032, AFRL/MN 
award number FA8651-05-1-0006, and the Utah State Centers of Excellence Program. 

REFERENCES 

[1] Nelson, D., Barber, B., McLain, T., and Beard, R.  Vector Field Path Following for Small Unmanned 
Aerial Vehicles, Proceedings of the American Control Conference, pp. 5788-5794, June 2006, 
Minneapolis, Minnesota. 

[2] Nelson, D., Barber, B., McLain, T., and Beard, R.  Vector Field Path Following for Miniature Air 
Vehicles, IEEE Transactions on Robotics.  Accepted for publication. 

[3] Barber, D., Griffiths, S., McLain, T., and Beard, R.  Autonomous Landing of Miniature Aerial Vehicles, 
Proceedings of the AIAA Infotech@Aerospace Conference, AIAA-2005-6949, September 2005, 
Washington, DC. 

[4] Barber, B., McLain, T., Taylor, C., and Beard, R.  Vision-based Landing of Fixed-wing Miniature Air 
Vehicles, Proceedings of the AIAA Infotech@Aerospace Conference, May 2007, Rohnert Park, CA. 

[5] Edwards, B., Fife, W., and Archibald, J.  A Design Approach For Small Vision-Based Autonomous 
Vehicles, Proceedings of the SPIE International Conference on Intelligent Robots and Computer Vision, 
Vol. 6384, October 2006. 

[6] Fife, W. and Archibald, J.  Reconfigurable On-board Vision Processing for Small Autonomous Vehicles, 
EURASIP Journal on Embedded Systems, Article ID 80141, 2007. 

[7] Barber, D., Redding, J., McLain, T., Beard, R., and Taylor, C.  Vision-based Target Geo-location Using 
a Fixed-wing Miniature Air Vehicle, Journal of Intelligent and Robotic Systems, vol. 47, no. 4, pp. 361-
382, December 2006. 

[8] Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., and Beard, R.  Obstacle and Terrain 
Avoidance for Miniature Unmanned Aerial Vehicles, IEEE Robotics and Automation Magazine, Special 
Issue on Unmanned Aerial Vehicles:  Enabling Technologies & Roadmap for Autonomy, vol. 13, no. 3, 
pp. 34-43, September 2006. 

[9] Saunders, J., Call B., Curtis, A., Beard, R., and McLain, T.  Static and Dynamic Obstacle Avoidance for 
Miniature Air Vehicles, Proceedings of the AIAA Infotech@Aerospace Conference, AIAA-2005-6950, 
September 2005, Washington, DC. 

[10] Knoebel, N., Osborne, S., Snyder, D., McLain, T., Beard, R., and Eldredge, A.  Preliminary Modeling, 
Control, and Trajectory Design for Miniature Autonomous Tailsitters, Proceedings of the AIAA 
Guidance, Navigation, and Control Conference, AIAA-2006-6713, August 2006, Keystone, Colorado. 

An Overview of MAV Research at Brigham Young University 

RTO-MP-AVT-146 27 - 19 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



[11] McLain, T. and Beard, R.  Coordination Variables, Coordination Functions, and Cooperative Timing 
Missions, AIAA Journal of Guidance, Control, and Dynamics, vol. 28, no. 1, pp. 150-161, January-
February 2005. 

[12] Beard, R., McLain, T., Kingston, D. Nelson, D., and Johanson, D.  Decentralized Cooperative Aerial 
Surveillance Using Fixed-Wing Miniature UAVs, Proceedings of the IEEE, vol. 94, no. 7, pp. 1306-
1323, July 2006. 

An Overview of MAV Research at Brigham Young University 

27 - 20 RTO-MP-AVT-146 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 


